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Effect of Length on the Fundamental Resonance
Frequency of Arterial Models having Radial

Dilatation
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Abstract—The pressure wave moving along an elastic artery
filled with blood was examined as a moving Windkessel having a
natural oscillation angular frequency 0 and a damping coefficient
. The radial directional motion for an element of the wall segment

and the adherent fluid was considered. This equation was solved
with conditions at both ends of an artery of length . An external
impulse force was applied at one end and a static pressure0 at
the other. Analytic solution allowed only certain oscillation modes
of resonance frequencies , where 2 = + 2 with
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and is the high frequency phase velocity.
The relationship between 0 and was examined experimen-

tally for tubes constructed of latex, rubber, or dissected aorta. The
effect of raising the static pressure 0 or increasing the tension
in the tube was consistent with the prediction. The hypertension
that accompanies an augmentation in arterial wall and the asso-
ciation between the heart rate and the mean blood pressure were
discussed.

Index Terms—Hypertension, moving Windkessel, transmission
line model.

I. INTRODUCTION

A RTERIAL-WALL elasticity influences pressure wave
propagation; however, in various early studies, such as

the Moens–Korteweg equation, the distensibility of the arterial
wall was assumed to be small and the change in the tube cross
section negligible.

Most models dealing with the equations of motion of fluid
streaming through a tube concentrated on the longitudinal mo-
tion. These models linearized and simplified the Navier–Stokes
equation. The wall was assumed static and the movement was
then treated as a perturbation. As a result, no significant radial
dilation was considered [1]–[4]. The kinetic energy of the flow
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was examined while the elastic energy stored in the wall was
ignored.

Another approach, the transmission line model (which
requires two lines) [4], [5], was used to simulate several
Windkessels arranged in series. This model yields an electrical
analog that can be applied when dealing with the relationship
between pressure and flow. The “capacitance per length”
represents the blood (or charge), as well as any energy other
than the kinetic energy stored in the system. Milnor [6], in his
derivation of a true propagation coefficient, used the trans-
mission line model. Although this correction provides good
results for high-frequency waves, for low-frequency waves, the
experimental result for impedance is still much higher than the
theoretical prediction. This analog is limited by defining the
“length” in “per length” and the number of elements required
for each artery. Moreover, it does not define how the different
elements of “per length” are coupled with each other [4], [5].
We, therefore, propose a new coupling mechanism, resonance,
to enlarge the application of the model [7]–[9]. This coupling
mechanism explains partially the discrepancy between the
experimental and theoretical results in Milnor’s work [7]–[9].
For an in situ artery, over 90% of the energy is stored in the
arterial wall and less than 10% is stored in the blood flow [3].
All of the models that start from the equation of motion of the
flow in the longitudinal direction take into account only a small
part of the energy. Therefore, any approximation made in the
model will cause enormous deviation in the prediction of the
entire system.

Our proposed model starts from the equation of motion in
the radial direction for a cylindrical elastic tube with adherent
fluid [10]. The wall squeezes the blood, and via the equation of
continuity of the fluid, the pressure wave drives a blood flow
wave.

The proposed pressure waveis governed by the following
equation:

(1)

The attenuation term is related to the kinetic viscosity of the
wall and the adherent fluid in the radial direction. The charac-
teristic angular frequency is related to the Young’s modulus,
arterial compliance, mass of the wall, the adherent fluid, as well
as the radius of the tube. is referred to as the high-frequency
phase velocity related to the shear modulus of the wall.

0018–9294/00$10.00 © 2000 IEEE



314 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 47, NO. 3, MARCH 2000

If the two analogous telegraph equations [4], [5] in the trans-
mission line model are combined, a similar equation can be ob-
tained

(2)

This equation also describes an attenuated propagating pressure
wave with as its high-frequency phase velocity, where

is the inertia per length of the fluid and is the ability to
store blood per length of the artery. This occurs only when there
are two lines. The oscillating system is the blood fluid between
the two lines; the attenuation term is related to the leakage
between the two lines, and the resistancein the axial direction.
The characteristic frequency becomes zero, when
the leakage or the longitudinal blood resistanceis small.

In the proposed model [10], the blood pressure wave is similar
to a transverse string wave, while in the transmission line model,
the blood pressure wave is like a longitudinal wave, which can
only occur in a two-line electrical analog.

For an elastic tube of finite length, there exist only cer-
tain resonance frequencies. A generalized solution

is obtained which will fit tubes with different elas-
ticities, densities, thicknesses, and lengths.In vitro experiments
to test the relationship betweenand of different tubes were
performed. From this result, we also proposed a mechanism how
the circulatory system adapts to match the resonance frequency
of the aorta with the heart rate.

II. THEORY

When a pressure wave moves along an elastic artery filled
with blood, each segment of the artery alternately expands
and shrinks in sequence in the radial direction. Viewed from
the axial direction, the expanding segment is moving along
the artery, squeezing the blood as it moves. This is similar to
a moving Windkessel, a chamber having an elastic wall that
moves along the artery.

If the tube is very long, we may assume
[10]. Then, at a fixed position located a distance

of from any external force, (1) becomes

(3)

where is the force passing along the elastic tube to the
point .

This equation represents a forced harmonic oscillation equa-
tion for which the driving force originates at the heart.

If the restoring force and the damping force are ignored, that
is, if the radius of the artery remains unchanged, then (1) be-
comes

(4)

This is the general wave propagation equation for a wave having
phase velocity (i.e., the Moens–Korteweg equation).

Thus, (1) can be considered as simply the combination of a
damped harmonic oscillation equation and a wave propagation
equation that drives a radial simple harmonic oscillation along
the artery.

The wave propagation equation can be derived [10] from the
radial equation of motion of an element containing a small por-
tion of the wall segment and the adherent fluid

(5)

where
the momentum of the element in the radial direction;
the normal force acting on the wall by the fluid pres-
sure;
restoring force due to the elasticity of the wall;
shear force;
frictional force in the radial direction;
the external force.;

The cross section of the artery is assumed to remain circular with
radius , which is a function of the axial distanceand time .
The momentum is proportional to the radial velocity of the
wall, that is, . We further assume that the wall material
obeys Hook’s law of elasticity. Then by the chain rule, the vari-
able is changed to the pressure variance via the
arterial compliance . The pressure variance

is defined as the difference between the internal fluid
pressure and the static pressure . That is

(6)

Thus, (5) becomes

(7)

where

in which
density of the arterial wall;
thickness of the wall;
density of the fluid that adheres to the wall;
thickness of the fluid that adheres to the wall and
moves radially together with the wall;
constant of viscosity for movement of the wall
and the adherent fluid in the radial direction;
the sum of the Young’s modulus in the radial and
that in the circumferential direction;
the sum of the Young’s modulus in the shear
modulus of the wall;
tension along the wall per-unit circumferential
length;
static radius of the tube.

Thus, the resistance coefficient, the characteristic angular fre-
quency , and the high-frequency phase velocity in (1) are
related to the physical property of the artery as

(8)

(9)
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(10)

In order to simulate the heart beat, an impulse external force,
with amplitude , is applied at one end of the artery. At

the other end of the artery , the pressure is maintained
at the static pressure . Thus, based on (6), the end condition
for the pressure variance in (7) is

(11)

For a linear solution to fit this boundary condition, we let

(12)

Substituting (12) into (7), we have

and the solution to this equation becomes

(13)

Substituting (13) into (12), we have

(14)

where

(15)

(16)

in which

(17)

(18)

are the allowed frequencies for the
oscillation modes existing on the artery of length. These fre-
quencies are referred to here as the resonance frequencies of
the tube. The amplitude of the mode decreases with the mode’s
number. For the fundamental mode, , the allowed fre-
quency is given by

(19)

Fig. 1. Experimental setup for the measurement of the impulse response of the
latex and the rubber tubes.

in which

(20)

III. M ETHODS AND MATERIALS

The proposed theory was verified experimentally. A diagram
of the system [7]–[10] is shown in Fig. 1. The tube was con-
nected at one end to a stepping motor controlled pump, which
generated an impulse. The other end of the tube was placed in
a container filled with water, the water level was 25-cm HO
above the level of the tube (with the exception of the tube to
which an additional static pressure was applied to yield a total
pressure of 35-cm HO). The response of the tube was mea-
sured at a position between 1/4 and 3/4 of the tube length using
a DP103 differential pressure transducer (Validyne, Northridge,
CA). The response in the time domain was digitized by ADC
with a sampling rate of 460/s. Then, Fourier transform was used
to obtain a response in the frequency domain. The fundamental
resonance frequency was determined by the first peak of the
amplitude in this domain.

The hog aorta was dissected from the animal immediately
after it was sacrificed. The outside fat and the connective tissue
were cleaned, and only the cylindrical shaped tube was kept.
Although the intima and probably a large portion of the media
were retained, most of the adventitia was removed. In order to
isolate a cylindrical tube, the cutting points on the branches were
very close to the aorta tube and the holes generated by the cut
branches were sealed by heat. The entire aorta was immersed
in Ringer’s solution at room temperature and gas (CO5% O
95%) was bubbled constantly to the solution to maintain the pH

7.4 and the oxygen content [11], [12] immediately after the
aorta was dissected. A diagram of the system for the hog aorta
experiments is shown in Fig. 2. All hog aorta experiments were
performed within 24 h after the death of the animals. An ultra-
sound flowmeter was also used in this setup to monitor the flow
wave in the hog aorta. If the aorta is healthy, both the pressure
wave and the flow wave will be steady, the flow wave is more
sensitive to the deterioration of the aorta. The flow wave was,
therefore, used as a control for determining the health of the
specimen.

Tubes made of latex, rubber and hog aorta (composed of tho-
racic aorta and abdominal aorta) were tested. The dimensions of
these tubes are listed in Table I.
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Fig. 2. Experimental setup for the measurement of the impulse response of the
dissected hog aorta.

TABLE I

Fig. 3. (a) Impulse response in the time domain, (b) impulse response
(amplitude) in the frequency domain, and (c) impulse response (phase) in the
frequency domain.

IV. RESULTS

The pressure impulse responses for latex tubes, rubber tubes,
or dissected hog aortas were similar. Typical data is shown in
Fig. 3. The impulse response in time domain for a hog aorta
of length cm measured at from the pump is

Fig. 4. Plot of f versus length of tube (�) for various tubes. The solid
theoretical line is determined by least squares fitting. (a) Latex tube. The
solid line is f =

p
0:27 + 10:7� 10 L . (b) Rubber tube. The solid

line is f =
p
0:77+ 1:30� 10 L . (c) Dissected hog aorta. The solid

line is f =
p
1:85 + 0:241� 10 L . (d) Same dissected hog aorta as

(c) with additional tension (stretched toin situ length). The solid line is
f =

p
1:16 + 0:282� 10 L . (e) Similar dissected hog aorta as (c) with

larger static pressure (35-cm HO rather than 25-cm HO). The solid line is
f =

p
2:83+ 0:119� 10 L .

shown in Fig. 3(a). The first peaks of the amplitude and the
phase in the frequency domain observed in Fig. 3(b) and (c),
respectively, gave the fundamental frequency Hz; the
second peak gave the second resonance frequency of approxi-
mately 6 Hz. The position of measurement did not affect the res-
onance frequencies of the various modes, it affected only the rel-
ative amplitude between different modes. Each experiment was
repeated four times. For all of the experiments, the CV (coeffi-
cient of variance) standard deviation/mean1%. (The stan-
dard derivations are too small to be shown in the figure.)

The fundamental resonance frequencies for various
lengths of different tube materials and conditions are sum-
marized in Fig. 4. The solid theoretical line is determined by
(19) using the least squares method to determineand .
All five data fit the theoretical predictions. From Fig. 3, we
estimated that Hz at 25-cm HO.
cm/s is the measured phase velocity obtained by passing a
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high-frequency pressure wave [approximately 4 Hz, which is
well above the Hz].

From Fig. 4, is for a hog aorta at a static pressure of
25-cm H O and is for a hog aorta at a static pressure of
35-cm H O. Substituting into (17), we have 1/s . The
static radius is 0.9 cm at a static pressure of 25-cm HO, and

is 1.0 cm at a static pressure of 35-cm HO, thus, the arterial
compliance is

cm cm
cm H O

cm

dyne/cm
cm dyne

Assuming , it implies that all of the water inside the tube
is squeezed forwardly by the wall movement whereas no water
adheres at the outside of the wall and by (9), we have
dyne/cm at a static pressure of approximately 30-cm HO.

is similar to (incremental elastic modulus) and in-
creases rapidly as the rise in static pressure [2]. Due to the
difficulty involved in keeping the prepared aorta from leaking
through the dozens of cut branches, elevating the static pressure
further was not possible. Therefore, is estimated to be ap-
proximately 10 dyne/cm for a striped aorta at a static pressure
of 105-cm H O.

From , we have cm/s for aorta
and cm/s for latex.

V. DISCUSSION

The aortas used in the present study were approximately
cylindrical. All outside attachments were stripped, and all
of the branches were cut very near to the branch point. The
results shown in Fig. 4(c)–(e) indicate some scattering from the
theoretical results. The aorta is not a good cylindrical tube as
compared to latex or rubber tubes.

The experimental results confirm that the fundamental fre-
quency of an arterial model of length is related as

. If the length is long enough such that ,
then is independent of the length. However, if ,
then is inversely proportional to the length, which is similar
to the standing wave result in which the resonance wave length
is determined mainly by the length of the tube. In the present
experiment, both terms are contributed.

At first glance, these are not the harmonics of the heart-
beat, and appear not to be consistent with the physiology. Ac-
tually, in the hog aorta, the wavelength of the resonance fre-
quency is about 10 m, which is very long compared to the
body length. Therefore, all other arteries that extend from the
aorta (illiac, femoral) are integrated and behave as an exten-
sion of the aorta. In addition those organs (kidney, spleen) that
are coupled with the aorta [7]–[9] will be integrated. The indi-
vidual resonance frequencies for the organs such as the kidney

are concealed when these organs are in the body, all the arteries
and organs are integrated into one unit and all of the resonance
frequencies in the entire circulatory system should then be the
harmonics of the heartbeat. This may be the reason why the
spectrum of the pressure pulse is harmonics of the heartbeat no
matter where the measurement is performed.

For a 50-cm-long aorta, the curves or equations in
Fig. 4(c)–(e) are used: Hz for the dissected
aorta, Hz for the aorta with tension, and
Hz for the aorta at elevated static pressure. All resonance
frequencies were in agreement with (17). The rise in static
pressure causes an increase in the Young’s modulus,
which in turn increases , and subsequently . This result
is consistent with physiology: when only the heart beat is
temporarily increased, the blood pressure is usually elevated,
so that the heart and the aorta may match each other in order
to maintain the resonance. Equation (17) may also explain
the results of Funget al. [13], [14]. They found that when
the mean pressure in an artery was raised by constriction, the
arterial wall was quickly remodeled. By (17), the increase in
wall thickness causes to become larger and decreasesand
, thus lowering . The arterial wall appears to thicken in

order to counterpoise the effect of the pressure rise, so that
of the artery will remain matching the heart rate. This may be a
general phenomenon for all hypertension cases.
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